Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474120

RESUMO

The accumulation and composition of anthocyanins in leaves of Kalanchoë blossfeldiana, detached and kept for five days under natural light conditions, were investigated. The presence of fifteen derivatives of cyanidin, petunidin, and delphinidin was found. Changes in the content of each anthocyanin in the leaves before and after exposure to light on the abaxial (naturally upper) and adaxial (naturally lower) sides of the leaves were compared. When the adaxial side was exposed to light, the anthocyanin contents of the leaves did not change. In contrast, when the abaxial side of detached leaves was exposed to light, there was enhanced accumulation of delphinidin-rhamnoside-glucoside, cyanidin-rhamnoside-glucoside, cyanidin-glucoside-glucoside, and two unknown derivatives of petunidin and delphinidin. Application of methyl jasmonate (JA-Me) on the abaxial side exposed to light inhibited the accumulation of these anthocyanins. This effect could probably be due to the presence of these anthocyanins in the epidermal cells of K. blossfeldiana leaves and was visible in the microscopic view of its cross-section. These anthocyanins were directly exposed to JA-Me, leading to inhibition of their formation and/or accumulation. The lack of significant effects of JA-Me on anthocyanin mono- and tri-glycosides may indicate that they are mainly present in the mesophyll tissue of the leaf.


Assuntos
Antocianinas , Kalanchoe , Folhas de Planta/fisiologia , Glicosídeos , Glucosídeos
2.
Metabolites ; 13(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37233712

RESUMO

Plant species are sensitive to stresses, especially at the seedling stage, and they respond to these conditions by making metabolic changes to counteract the negative effects of this. The objectives of this study were to determine carbohydrate profile in particular organs (roots, hypocotyl, and cotyledons) of common buckwheat seedlings and to verify whether carbohydrate accumulation is similar or not in the organs in response to cold stress and dehydration. Roots, hypocotyl, and cotyledons of common buckwheat seedlings have various saccharide compositions. The highest concentrations of cyclitols, raffinose, and stachyose were found in the hypocotyl, indicating that they may be transported from cotyledons, although this needs further studies. Accumulation of raffinose and stachyose is a strong indicator of the response of all buckwheat organs to introduced cold stress. Besides, cold conditions reduced d-chiro-inositol content, but did not affect d-pinitol level. Enhanced accumulation of raffinose and stachyose were also a distinct response of all organs against dehydration at ambient temperature. The process causes also a large decrease in the content of d-pinitol in buckwheat hypocotyl, which may indicate its transformation to d-chiro-inositol whose content increased at that time. In general, the sucrose and its galactosides in hypocotyl tissues were subject to the highest changes to the applied cold and dehydration conditions compared to the cotyledons and roots. This may indicate tissue differences in the functioning of the protective system(s) against such threats.

3.
Plants (Basel) ; 12(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111851

RESUMO

Cyclitols, such as myo-inositol and its isomers and methyl derivatives (i.e., d-chiro-inositol and d-pinitol (3-O-methyl-chiro-inositol)), are classified as osmolytes and osmoprotectants and are significantly involved in plant responses to abiotic stresses, such as drought, salinity and cold. Moreover, d-pinitol demonstrates a synergistic effect with glutathione (GSH), increasing its antioxidant properties. However, the role of cyclitols in plant protection against stresses caused by metal nanoparticles is not yet known. Therefore, the present study examined the effects of myo-inositol, d-chiro-inositol and d-pinitol on wheat germination, seedling growth and changes in the profile of soluble carbohydrates in response to biologically synthesized silver nanoparticles ((Bio)Ag NPs). It was found that cyclitols were absorbed by germinating grains and transported within the growing seedlings but this process was disrupted by (Bio)Ag NPs. Cyclitols applied alone induced sucrose and 1-kestose accumulation in seedlings slightly, while (Bio)Ag NP doubled the concentrations of both sugars. This coincided with a decrease in monosaccharides; i.e., fructose and glucose. Cyclitols and (Bio)Ag NPs present in the endosperm resulted in reductions in monosaccharides, maltose and maltotriose, with no effect on sucrose and 1-kestose. Similar changes occurred in seedlings developing from primed grains. Cyclitols that accumulated in grain and seedlings during grain priming with d-pinitol and glutathione did not prevent the phytotoxic effects of (Bio)Ag NPs.

4.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362042

RESUMO

The phytotoxicity of silver nanoparticles (Ag NPs) to plant seeds germination and seedlings development depends on nanoparticles properties and concentration, as well as plant species and stress tolerance degrees. In the present study, the effect of citrate-stabilized spherical Ag NPs (20 mg/L) in sizes of 10, 20, 40, 60, and 100 nm, on wheat grain germination, early seedlings development, and polar metabolite profile in 3-day-old seedlings were analyzed. Ag NPs, regardless of their sizes, did not affect the germination of wheat grains. However, the smaller nanoparticles (10 and 20 nm in size) decreased the growth of seedling roots. Although the concentrations of total polar metabolites in roots, coleoptile, and endosperm of seedlings were not affected by Ag NPs, significant re-arrangements of carbohydrates profiles in seedlings were noted. In roots and coleoptile of 3-day-old seedlings, the concentration of sucrose increased, which was accompanied by a decrease in glucose and fructose. The concentrations of most other polar metabolites (amino acids, organic acids, and phosphate) were not affected by Ag NPs. Thus, an unknown signal is released by small-sized Ag NPs that triggers affection of sugars metabolism and/or distribution.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Germinação , Triticum , Plântula , Prata/farmacologia , Raízes de Plantas , Nanopartículas/química
5.
Plants (Basel) ; 11(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35890510

RESUMO

The use of silver nanoparticles (Ag NPs) on plants is accompanied by the occurrence of Ag+ ions, so the research of the effects of both on plants should be related. Therefore, in our study, the effects of Ag NPs suspension (containing Ag0 at 20 mg/L) and AgNO3 solutions (with the concentration of Ag+ ions at 20 and 50 mg/L) on the seed germination and early seedling growth (4 days) of pea (Pisum sativum L.) were compared. Both Ag NPs and AgNO3 did not decrease seed germination, and even stimulated seedling growth. In seedlings developing in the Ag NPs suspension, an increase in monosaccharides, homoserine and malate was noted. In the next experiment, the effect of short-term seed imbibition (8 h) in AgNO3 at elevated concentrations, ranging from 100 to 1000 mg/L, on the further seed germination, seedling growth (in absence of AgNO3) and their polar metabolic profiles were evaluated. The seed imbibition in AgNO3 solutions at 500 and 1000 mg/L reduced seed germination, inhibited seedlings' growth and caused morphological deformations (twisting and folding of root). The above phytotoxic effects were accompanied by changes in amino acids and soluble carbohydrates profiles, in both sprouts and cotyledons. In deformed sprouts, the content of homoserine and asparagine (major amino acids) decreased, while alanine, glutamic acid, glutamine, proline, GABA (γ-aminobutyric acid) and sucrose increased. The increase in sucrose coincided with a decrease in glucose and fructose. Sprouts, but not cotyledons, also accumulated malic acid and phosphoric acid. Additionally, cotyledons developed from seeds imbibed with AgNO3 contained raffinose and stachyose, which were not detectable in sprouts and cotyledons of control seedlings. The obtained results suggest the possible disturbances in the mobilization of primary (oligosaccharides) and presumably major storage materials (starch, proteins) as well as in the primary metabolism of developing seedlings.

6.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408702

RESUMO

Changes in the metabolome of germinating seeds and seedlings caused by metal nanoparticles are poorly understood. In the present study, the effects of bio-synthesized silver nanoparticles ((Bio)Ag NPs) on grains germination, early seedlings development, and metabolic profiles of roots, coleoptile, and endosperm of wheat were analyzed. Grains germinated well in (Bio)Ag NPs suspensions at the concentration in the range 10-40 mg/L. However, the growth of coleoptile was inhibited by 25%, regardless of (Bio)Ag NPs concentration tested, whereas the growth of roots gradually slowed down along with the increasing concentration of (Bio)Ag NPs. The deleterious effect of Ag NPs on roots was manifested by their shortening, thickening, browning of roots tips, epidermal cell death, progression from apical meristem up to root hairs zone, and the inhibition of root hair development. (Bio)Ag NPs stimulated ROS production in roots and affected the metabolic profiles of all tissues. Roots accumulated sucrose, maltose, 1-kestose, phosphoric acid, and some amino acids (i.e., proline, aspartate/asparagine, hydroxyproline, and branched-chain amino acids). In coleoptile and endosperm, contrary to roots, the concentration of most metabolites decreased. Moreover, coleoptile accumulated galactose. Changes in the concentration of polar metabolites in seedlings revealed the affection of primary metabolism, disturbances in the mobilization of storage materials, and a translocation of sugars and amino acids from the endosperm to growing seedlings.


Assuntos
Germinação , Nanopartículas Metálicas , Aminoácidos/metabolismo , Metaboloma , Raízes de Plantas/metabolismo , Plântula , Prata/metabolismo , Prata/farmacologia , Triticum/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163626

RESUMO

The metabolic re-arrangements of peas (Pisum sativum L.) under soil drought and re-watering are still not fully explained. The search for metabolic markers of the stress response is important in breeding programs, to allow for the selection drought-resistant cultivars. During the present study, changes in the polar metabolite content in pea plant shoots were measured under repeated short-term soil drought and subsequent re-watering. A gas chromatograph, equipped with a mass spectrometer (GC-MS), was used for the metabolite profiling of pea plants during their middle stage of vegetation (14-34 days after sowing, DAS). The major changes occurred in the concentration of amino acids and some soluble carbohydrates. Among them, proline, γ-aminobutyric acid (GABA), branched-chain amino acids, hydroxyproline, serine, myo-inositol, and raffinose were accumulated under each soil drought and decreased after re-watering. Besides, the obtained results show that the first drought/re-watering cycle increased the ability of pea plants to restore a metabolic profile similar to the control after the second similar stress. The accumulation of proline seems to be an important part of drought memory in pea plants. However, confirmation of this suggestion requires metabolite profiling studies on a broader spectrum of pea cultivars.


Assuntos
Secas , Metaboloma , Prolina/metabolismo , Estresse Fisiológico , /fisiologia , Rafinose , Água
8.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614068

RESUMO

Accumulation of anthocyanins in detached leaves and in excised stems of Kalanchoë blossfeldiana kept under natural light conditions in the presence or absence of methyl jasmonate (JA-Me) was investigated. When the abaxial surface of detached leaves was held lower than the adaxial surface (the normal or natural position) under natural light conditions, anthocyanins were not accumulated on the abaxial side of the leaves. In contrast, when the adaxial surface of detached leaves was held lower than the abaxial surface (inverted position), anthocyanins were highly accumulated on the abaxial side of the leaves. These phenomena were independent of the growth stage of K. blossfeldiana as well as photoperiod. Application of JA-Me in lanolin paste significantly inhibited anthocyanin accumulation induced on the abaxial side of detached leaves held in an inverted position in a dose-dependent manner. Anthocyanin accumulation in the excised stem in response to natural light was also significantly inhibited by JA-Me in lanolin paste. Possible mechanisms of anthocyanin accumulation on the abaxial side of detached K. blossfeldiana leaves held in an inverted position under natural light conditions and the inhibitory effect of JA-Me on this process are described. The accompanying changes in the content of primary metabolites and histological analyses were also described.


Assuntos
Antocianinas , Kalanchoe , Antocianinas/farmacologia , Antocianinas/metabolismo , Kalanchoe/metabolismo , Lanolina/metabolismo , Lanolina/farmacologia , Folhas de Planta/metabolismo
9.
Biomolecules ; 11(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439856

RESUMO

The effects of elicitors on broccoli (Brassica oleracea L. var. Italica) and radish (Raphanus sativus L.) sprouts were evaluated. Seeds and then sprouts were soaked daily for 30 min over 6 days in water (control) or a mixture of FeEDTA and sodium silicate or sodium silicate alone. The contents of the flavonoids and phenolic acids (free, esters, and glycosides) were determined using HPLC-ESI-MS/MS. Phenolic compounds were released from the esters after acid hydrolysis and from the glycosides using alkaline hydrolysis. Quercetin, kaempferol, (‒)-epicatechin, naringenin, apigenin, and luteolin derivatives were found in broccoli and radish sprouts, while derivatives of iso-rhamnetin, orientin, and vitexin were not present at measurable levels. The flavonoid contents, especially derivatives of quercetin, were considerably higher in the broccoli sprouts than in the radish sprouts. The quantitatively major phenolic acid content in the sprouts of both species was found to be p-hydroxybenzoic acid. Its content in the radish sprouts was several times higher than in the broccoli sprouts. The total flavonoid content of broccoli sprouts was 507-734 µg/g DW, while that of the radish sprouts ranged from 155 µg/g DW to 211 µg/g DW. In contrast, total phenolic acids were higher in radish sprouts, ranging from 11,548 to 13,789 µg/g DW, while in broccoli sprouts, they ranged from 2652 to 4527 µg/g DW, respectively. These differences resulted radish sprouts having higher antioxidant activity compared to broccoli sprouts. The applied elicitors increased the content of the total phenolic acids and the antioxidant activity of radish and broccoli sprouts, while they decreased the level of the total flavonoids in broccoli sprouts.


Assuntos
Brassica/metabolismo , Ácido Edético/metabolismo , Polifenóis/biossíntese , Raphanus/metabolismo , Silicatos/metabolismo , Sementes/metabolismo
10.
Molecules ; 26(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361835

RESUMO

The present study compared the effects of natural senescence and methyl jasmonate (JA-Me) treatment on the levels of terpene trilactones (TTLs; ginkgolides and bilobalide), phenolic acids, and flavonoids in the primary organs of Ginkgo biloba leaves, leaf blades, and petioles. Levels of the major TTLs, ginkgolides B and C, were significantly higher in the leaf blades of naturally senesced yellow leaves harvested on 20 October compared with green leaves harvested on 9 September. In petioles, a similar effect was found, although the levels of these compounds were almost half as high. These facts indicate the importance of the senescence process on TTL accumulation. Some flavonoids and phenolic acids also showed changes in content related to maturation or senescence. Generally, the application of JA-Me slightly but substantially increased the levels of TTLs in leaf blades irrespective of the difference in its application side on the leaves. Of the flavonoids analyzed, levels of quercetin, rutin, quercetin-4-glucoside, apigenin, and luteolin were dependent on the JA-Me application site, whereas levels of (+) catechin and (-) epicatechin were not. Application of JA-Me increased ferulic acid and p-coumaric acid esters in the petiole but decreased the levels of these compounds in the leaf blade. The content of p-coumaric acid glycosides and caffeic acid esters was only slightly modified by JA-Me. In general, JA-Me application affected leaf senescence by modifying the accumulation of ginkogolides, flavonoids, and phenolic acids. These effects were also found to be different in leaf blades and petioles. Based on JA-Me- and aging-related metabolic changes in endogenous levels of the secondary metabolites in G. biloba leaves, we discussed the results of study in the context of basic research and possible practical application.


Assuntos
Senescência Celular , Ciclopentanos/farmacologia , Flavonoides/metabolismo , Ginkgo biloba/metabolismo , Hidroxibenzoatos/metabolismo , Lactonas/metabolismo , Oxilipinas/farmacologia , Folhas de Planta/metabolismo , Flavonoides/análise , Ginkgo biloba/efeitos dos fármacos , Ginkgo biloba/crescimento & desenvolvimento , Hidroxibenzoatos/análise , Lactonas/análise , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Terpenos/análise , Terpenos/metabolismo
11.
Molecules ; 26(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802449

RESUMO

Seven-day-old sprouts of fenugreek (Trigonella foenum-graecum L.), lentil (Lens culinaris L.), and alfalfa (Medicagosativa L.) were studied. The legume seeds and then sprouts were soaked each day for 30 min during 6 days with water (control) or mixture of Fe-EDTA and sodium silicate (Optysil), or sodium silicate (Na-Sil) alone. Germination and sprout growing was carried out at temperature 20 ± 2 °C in 16/8 h (day/night) conditions. Phenolic compounds (free, ester, and glycosides) content were determined by HPLC-ESI-MS/MS using a multiple reaction monitoring of selected ions. Flavonoids and phenolic acids were released from their esters after acid hydrolysis and from glycosides by alkaline hydrolysis. The presence and high content of (-)-epicatechin (EC) in fenugreek sprouts was demonstrated for the first time. Applied elicitors decreased the level of free EC in fenugreek and alfalfa sprouts but enhanced the content of its esters. Besides, elicitors decreased the content of quercetin glycosides in lentil and fenugreek sprouts but increased the content of quercetin and apigenin glycosides in alfalfa sprouts. The applied elicitors decreased the glycoside levels of most phenolic acids in lentil and p-hydroxybenzoic acid in fenugreek, while they increased the content of this acid in alfalfa. The mixture of iron chelate and sodium silicate had less effect on changes in flavonoid and phenolic acid content in legume sprouts than silicate alone. In general, the used elicitors increased the content of total phenolic compounds in fenugreek and alfalfa sprouts and decreased the content in lentil sprouts. Among the evaluated elicitors, Optysil seems to be worth recommending due to the presence of iron chelate, which can be used to enrich sprouts with this element.


Assuntos
Quelantes de Ferro/farmacologia , Lens (Planta)/metabolismo , Medicago sativa/metabolismo , Fenóis/análise , Sementes/metabolismo , Silicatos/farmacologia , Trigonella/metabolismo , Flavonoides/análise , Germinação , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/crescimento & desenvolvimento , Medicago sativa/efeitos dos fármacos , Medicago sativa/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Trigonella/efeitos dos fármacos , Trigonella/crescimento & desenvolvimento
12.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008692

RESUMO

The present study clarified changes in the contents of polar metabolites (amino acids, organic acids, saccharides, cyclitols, and phosphoric acid) in leaf senescence in Ginkgo biloba with or without the application of methyl jasmonate (JA-Me) in comparison with those in naturally senescent leaf blades and petioles. The contents of most amino acids and citric and malic acids were significantly higher in abaxially, and that of myo-inositol was lower in abaxially JA-Me-treated leaves than in adaxially JA-Me-treated and naturally senescent leaves. The levels of succinic and fumaric acids in leaves treated adaxially substantially high, but not in naturally senescent leaves. In contrast, sucrose, glucose, and fructose contents were much lower in leaf blades and petioles treated abaxially with JA-Me than those treated adaxially. The levels of these saccharides were also lower compared with those in naturally senescent leaves. Shikimic acid and quinic acid were present at high levels in leaf blades and petioles of G. biloba. In leaves naturally senescent, their levels were higher compared to green leaves. The shikimic acid content was also higher in the organs of naturally yellow leaves than in those treated with JA-Me. These results strongly suggest that JA-Me applied abaxially significantly enhanced processes of primary metabolism during senescence of G. biloba compared with those applied adaxially. The changes in polar metabolites in relation to natural senescence were also discussed.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Ginkgo biloba/crescimento & desenvolvimento , Ginkgo biloba/metabolismo , Metaboloma , Oxilipinas/farmacologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Senescência Vegetal , Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Ciclitóis/metabolismo , Ginkgo biloba/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica , Ácidos Fosfóricos/metabolismo , Folhas de Planta/efeitos dos fármacos , Senescência Vegetal/efeitos dos fármacos , Análise de Componente Principal
13.
Acta Biol Hung ; 67(4): 403-411, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28000505

RESUMO

The impact of short-term UV-B treatment on the content of individual flavonoids and photosynthetic pigments in cotyledons and the growth of common buckwheat (Fagopyrum esculentum Moench) seedlings was investigated. Seeds of four common buckwheat cultivars were germinated in darkness over a period of 4 days and acclimatized for 2 days under a 16/8 h light/dark photoperiod at 24/18 °C day/night, and exposure to 100-120 µmol ∙ m-2 ∙ s-1 of photosynthetically active radiation (PAR). Seedlings were divided into three batches, including two batches subjected to different doses of UV-B (5 W ∙ m-2 and 10 W ∙ m-2, one hour per day) for 5 days, and a control group exposed to PAR only. Exposure to UV-B increased anthocyanin levels in the cotyledons of all examined cultivars, it inhibited hypocotyl elongation, but did not affect the content of photosynthetic pigments. Flavone concentrations increased in cv. Red Corolla and Kora, remained constant in cv. Panda and decreased in cv. Hruszowska. Exposure to UV-B decreased rutin levels in cv. Hruszowska, but not in the remaining cultivars. Cultivars Hruszowska, Panda and Kora appeared to be less resistant to UV-B than Red Corolla. Higher resistance to UV-B radiation in Red Corolla can probably be attributed to its higher content of anthocyanins and rutin in comparison with the remaining cultivars.


Assuntos
Antocianinas/efeitos da radiação , Carotenoides/efeitos da radiação , Cotilédone/efeitos da radiação , Fagopyrum/efeitos da radiação , Flavonas/efeitos da radiação , Flavonóis/efeitos da radiação , Plântula/efeitos da radiação , Raios Ultravioleta , Antocianinas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila/efeitos da radiação , Cotilédone/metabolismo , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Flavonas/metabolismo , Flavonoides/metabolismo , Flavonoides/efeitos da radiação , Flavonóis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Fenóis/metabolismo , Fenóis/efeitos da radiação , Rutina/metabolismo , Rutina/efeitos da radiação , Plântula/crescimento & desenvolvimento
14.
Acta Parasitol ; 60(4): 654-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26408587

RESUMO

The purpose of the study was to assess the prevalence and coinfection rates of Borrelia burgdorferi sensu lato genotypes in Ixodes ricinus (L.) ticks sampled from diverse localities in central and eastern regions of Poland. In years 2009-2011, questing nymphs and adults of I. ricinus were collected using a flagging method at 18 localities representing distinct ecosystem types: urban green areas, suburban forests and rural woodlands. Molecular detection of B. burgdorferi s.l. genospecies was based on amplification of a fla gene using nested PCR technique, subsequent PCR-RFLP analysis and bidirectional sequencing. It was revealed that 45 samples (2.1%) harboured two different B. burgdorferi s.l. genospecies, whereas triple infections with various spirochetes was found in 11 (0.5%) individuals. Generally, the highest average coinfection rates were evidenced in arachnids gathered at rural woodlands, intermediate at suburban forests, while the lowest were recorded at urban green areas. Overall, single spirochete infections were noted in 16.3% (n = 352/2,153) ticks. Importantly, it is the first report evidencing the occurrence of Borrelia miyamotoi (0.3%, n = 7/2153) in I. ricinus populations within central Poland. Circumstantial variability of B. burgdorferi s.l. genospecies in the common tick individuals sampled at various habitat types in central and eastern Poland was displayed. The coexistence of two or three different spirochete genospecies in single adult ticks, as well as the presence of B. miyamotoi were demonstrated. Therefore, further studies uncovering the co-circulation of the tested bacteria and other human pathogens in I. ricinus ticks are required.


Assuntos
Grupo Borrelia Burgdorferi/classificação , Grupo Borrelia Burgdorferi/isolamento & purificação , Ixodes/microbiologia , Animais , Infecções Bacterianas/microbiologia , Coinfecção/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Ecossistema , Humanos , Polônia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prevalência , Análise de Sequência de DNA
15.
Acta Biochim Pol ; 62(2): 235-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25856561

RESUMO

Methyl jasmonate has a strong effect on secondary metabolizm in plants, by stimulating the biosynthesis a number of phenolic compounds and alkaloids. Common buckwheat (Fagopyrum esculentum Moench) is an important source of biologically active compounds. This research focuses on the detection and quantification of 2-phenylethylamine and its possible metabolites in the cotyledons, hypocotyl and roots of common buckwheat seedlings treated with methyl jasmonate. In cotyledons of buckwheat sprouts, only traces of 2-phenylethylamine were found, while in the hypocotyl and roots its concentration was about 150 and 1000-times higher, respectively. Treatment with methyl jasmonate resulted in a 4-fold increase of the 2-phenylethylamine level in the cotyledons of 7-day buckwheat seedlings, and an 11-fold and 5-fold increase in hypocotyl and roots, respectively. Methyl jasmonate treatment led also to about 4-fold increase of phenylacetic acid content in all examined seedling organs, but did not affect the 2-phenylethanol level in cotyledons, and slightly enhanced in hypocotyl and roots. It has been suggested that 2-phenylethylamine is a substrate for the biosynthesis of phenylacetic acid and 2-phenylethanol, as well as cinnamoyl 2-phenethylamide. In organs of buckwheat seedling treated with methyl jasmonate, higher amounts of aromatic amino acid transaminase mRNA were found. The enzyme can be involved in the synthesis of phenylpyruvic acid, but the presence of this compound could not be confirmed in any of the examined organs of common buckwheat seedling.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Fagopyrum/metabolismo , Oxilipinas/farmacologia , Fenetilaminas/metabolismo , Fenilacetatos/metabolismo , Álcool Feniletílico/metabolismo , Enzimas/genética , Enzimas/metabolismo , Fagopyrum/efeitos dos fármacos , Fagopyrum/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo
16.
Pestic Biochem Physiol ; 107(1): 78-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25149239

RESUMO

Fluazifop-p-butyl (FL) is one of the most popular graminicides from arylophenoxypropionate group. These herbicides act as inhibitors of acetyl-CoA carboxylase (ACCase) that catalyzes the formation of malonyl-CoA during metabolism of lipids and/or of some secondary compounds. On the other hand arylopropionates and cyclohexanediones cause phytotoxic effects by stimulating free-radicals generation and causing oxidative stress in susceptible plants. However, the importance of disturbances in plant pigments and polyamines accumulation for this effect is not clear. The aim of this work is to quantify the phytotoxicity of FL to non target maize plant and to explain how photosynthetic pigments, anthocyanins (ANC) and polyamines participate in this interaction. Obtained results showed reduction of chlorophyll a and b, but only in case of the highest herbicide dose. Lower FL concentrations caused increase of the photosynthetic pigments, or were not effective. A similar effect was stated for putrescine, while spermidine was reduced within epicotyl of leaf tissues. In case of 2-phenylethylamine (PEA), there was observed a lack of significant changes within leaves and an increase in epicotyl under the middle and the highest dose of the herbicide. Moreover, FL induced ANC accumulation in epicotyls of maize seedlings. The activity of such key enzymes of polyamine biosynthesis as: ornithine decarboxylase (ODC) and lysine decarboxylase (LDC), increased in leaves treated with herbicide at the lowest concentration and decreased under the highest. However, in case of epicotyls the decreasing tendency was observed with the exception of ODC under the highest FL dose. The activity of tyrosine decarboxylase (TyDC) was importantly elevated only within epicotyls under the lower FL concentrations. It was concluded that FL inhibits maize growth, and the intensity of the effect is positively correlated with the herbicide concentration. The phenomenon was related to changes in content of pigments, polyamines and activity of studied enzymes.


Assuntos
Herbicidas/toxicidade , Piridinas/toxicidade , Zea mays/efeitos dos fármacos , Antocianinas/metabolismo , Carboxiliases/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Fenetilaminas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
17.
Carbohydr Res ; 340(7): 1441-6, 2005 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-15854620

RESUMO

The molecular structure of galactosyl-D-(-)-bornesitol, a novel compound isolated from sweet pea seeds, was determined to be alpha-D-galactopyranosyl-(1-->3)-1-O-methyl-1D-myo-inositol by 1D and 2D NMR spectroscopy and is assigned the trivial name lathyritol.


Assuntos
Galactosídeos/química , Galactosídeos/isolamento & purificação , Inositol/análogos & derivados , Lathyrus/química , Sementes/química , Sequência de Carboidratos , Inositol/química , Inositol/isolamento & purificação , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...